投資対効果を最大化する AI導入7つのルール

投資対効果を最大化する AI導入7つのルール

試し読みをする

※電子書籍ストアBOOK☆WALKERへ移動します。

試し読みをする

※電子書籍ストアBOOK☆WALKERへ移動します。

  • 定価: (本体円+税)
発売日:
2020年02月29日
判型:
四六判
商品形態:
単行本
ページ数:
208
ISBN:
9784046045478

投資対効果を最大化する AI導入7つのルール

  • 著者 石川 聡彦
  • 定価: 円 (本体円+税)
発売日:
2020年02月29日
判型:
四六判
商品形態:
単行本
ページ数:
208
ISBN:
9784046045478

AIを使いこなすための必読書

「DX時代のビジネスパーソンの新しい教養はこれだ。」
経団連会長 中西宏明 氏 推薦!

50,000人の人材育成と、
120法人以上へのサービス提供から導かれた、
AI導入の鉄則とは? 

本書は、AI(機械学習)の導入を始めたり、検討したりしているが、
うまくいかない企業および担当者の方々に、
最初の“ボタンの掛け違い”を理解していただき、
AI導入を成功させる“ルール”を伝授するものです。

「AIのビジネス活用における考え方」を、
「7つのルール」にまとめています。

難しい理論や複雑な数式は登場しません。
機械学習の理論を易しく解説した上で、
ビジネスで活用するうえでの、
押さえておくべきポイントを解説していきます

2020年現在、「機械学習を学ぶことはコスパが良い」といえます。
機械学習のプロフェッショナルはまだ少なく、
学ぶハードルも下がってきました。

機械学習の技術の素養を身に着ければ、仕事の幅が大きく広がるでしょう。
本書は、AIなどのデジタルテクノロジーを使いこなすための、必読書です。


【こちらの方々に最適】
・AIのビジネスへの応用を考えているビジネスプランナー
・企業や応用領域で機械学習の活用を考えているエンジニア
・AIを使ってビジネスを革新したい経営者

【本書で扱うルール】
ルール1. 機械学習の投資対効果を明確にすべし
ルール2. 「使えないデータ」と「使えるデータ」を把握すべし
ルール3. 機械学習で狙うべき領域を同定すべし
ルール4. インプットとアウトプットの解像度を高めるべし
ルール5. 機械学習の性能を正しく評価すべし
ルール6. 実運用のイメージを高めるべし
ルール7. ステークホルダーとのエコシステムをつくるべし
「DX時代のビジネスパーソンの新しい教養はこれだ。」
経団連会長 中西宏明 氏 推薦!

50,000人の人材育成と、
120法人以上へのサービス提供から導かれた、
AI導入の鉄則とは? 

本書は、AI(機械学習)の導入を始めたり、検討したりしているが、
うまくいかない企業および担当者の方々に、
最初の“ボタンの掛け違い”を理解していただき、
AI導入を成功させる“ルール”を伝授するものです。

「AIのビジネス活用における考え方」を、
「7つのルール」にまとめています。

難しい理論や複雑な数式は登場しません。
機械学習の理論を易しく解説した上で、
ビジネスで活用するうえでの、
押さえておくべきポイントを解説していきます

2020年現在、「機械学習を学ぶことはコスパが良い」といえます。
機械学習のプロフェッショナルはまだ少なく、
学ぶハードルも下がってきました。

機械学習の技術の素養を身に着ければ、仕事の幅が大きく広がるでしょう。
本書は、AIなどのデジタルテクノロジーを使いこなすための、必読書です。


【こちらの方々に最適】
・AIのビジネスへの応用を考えているビジネスプランナー
・企業や応用領域で機械学習の活用を考えているエンジニア
・AIを使ってビジネスを革新したい経営者

【本書で扱うルール】
ルール1. 機械学習の投資対効果を明確にすべし
ルール2. 「使えないデータ」と「使えるデータ」を把握すべし
ルール3. 機械学習で狙うべき領域を同定すべし
ルール4. インプットとアウトプットの解像度を高めるべし
ルール5. 機械学習の性能を正しく評価すべし
ルール6. 実運用のイメージを高めるべし
ルール7. ステークホルダーとのエコシステムをつくるべし

※画像は表紙及び帯等、実際とは異なる場合があります。

もくじ

■CHAPTER 1 9割のAI導入は“知らず損”で失敗する!
人工知能は早くも幻滅期へ突入した!
PoC死の多さに多くの人が幻滅している!
エンジニアとプランナーの“歩み寄り”はあるか
PoC死はPoCの前工程から決まっている!
本当に機械学習が必要なことを見極める
ML BUSINESS CANVASの概念を押さえる
「制約条件」を意識して取り組んでいるか?
成功要件を事前に定義しておくことが大切

■CHAPTER2 投資対効果を最大化する企業が守るAI導入7つのルール
7つのルールでAI・機械学習の効果を最大化

【ルール1】機械学習の投資対効果を明確にすべし
「とりあえず、AI使ってよ!」で大損する
性能とインパクトを関連づけて仮説を立てる
すぐに人間を超えられる!? それは大きな勘違い
機械学習は高コスト体質!?

【ルール2】「使えないデータ」と「使えるデータ」を把握すべし
意外に多い!「使えないデータ」
ゴミの山でも磨けば宝の山に!?
競争優位につながるデータを収集していく
IoTと組み合わせてハードは「常に未完成」に

【ルール3】機械学習で狙うべき領域を同定すべし
PDCAを無目的に回さない
スイートスポットを狙い撃て!
1つのプロジェクトに一点投下は危険

【ルール4】インプットとアウトプットの解像度を高めるべし
Garbage in, garbage outを回避せよ!
AIには得意・不得意がある

【ルール5】機械学習の性能を正しく評価すべし
正解率99.9%に仕掛けられた罠
プランナーの性能とエンジニアの性能

【ルール6】実運用のイメージを高めるべし
「頭脳」はどこに置くのが最適なのか
機械学習モデルは再学習で性能が保たれる
“足場がくずれる”のを察知する

【ルール7】ステークホルダーとのエコシステムをつくるべし
機械学習プロジェクトは後戻りできない!
できる大人は頼み方を知っている
AIの分野にも完璧な超人は存在しない

■CHAPTER3 実例でよくわかるビジネスAI導入「企画書」の鉄則
機械学習プロジェクトの企画書を公開!
事例1:工場の機器故障検知を機械学習で実現したA社
事例2:製品の不良品検知を機械学習で実現したB社
事例3:商材の法人営業ソリューションを機械学習で実現したC社

■CHAPTER4 これからの企業とAI活用
AutoMLやDataRobotの登場で機械学習は変革期を迎えた
事業定義がすべてを決める
社内に「AI人材」を増やす処方箋

この著者の商品

最近チェックした商品